General Lower Bounds on Maximal Determinants of Binary Matrices
نویسندگان
چکیده
We prove general lower bounds on the maximal determinant of n× n {+1,−1}matrices, both with and without the assumption of the Hadamard conjecture. Our bounds improve on earlier results of de Launey and Levin (2010) and, for certain congruence classes of n mod 4, the results of Koukouvinos, Mitrouli and Seberry (2000). In an Appendix we give a new proof, using Jacobi’s determinant identity, of a result of Szöllősi (2010) on minors of Hadamard matrices.
منابع مشابه
Probabilistic lower bounds on maximal determinants of binary matrices
Let D(n) be the maximal determinant for n × n {±1}-matrices, and R(n) = D(n)/n be the ratio of D(n) to the Hadamard upper bound. Using the probabilistic method, we prove new lower bounds on D(n) and R(n) in terms of the distance d to the nearest (smaller) Hadamard matrix, defined by d = n − h, where h is the order of a Hadamard matrix and h is maximal subject to h ≤ n. The lower bounds on R(n) ...
متن کاملLower bounds on maximal determinants of binary matrices via the probabilistic method
Let D(n) be the maximal determinant for n × n {±1}-matrices, and R(n) = D(n)/n be the ratio of D(n) to the Hadamard upper bound. We give several new lower bounds on R(n) in terms of d, where n = h + d, h is the order of a Hadamard matrix, and h is maximal subject to h ≤ n. A relatively simple bound is R(n) ≥ ( 2 πe )d/2( 1− d ( π 2h )1/2) for all n ≥ 1. An asymptotically sharper bound is R(n) ≥...
متن کاملLower Bounds of Copson Type for Hausdorff Matrices on Weighted Sequence Spaces
Let = be a non-negative matrix. Denote by the supremum of those , satisfying the following inequality: where , , and also is increasing, non-negative sequence of real numbers. If we used instead of The purpose of this paper is to establish a Hardy type formula for , where is Hausdorff matrix and A similar result is also established for where In particular, we apply o...
متن کاملSome inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm
Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 20 شماره
صفحات -
تاریخ انتشار 2013